Sie sind hier: Startseite » Markt » Tipps und Hinweise

Optimale Wissensspeicher


Vier Kriterien für die Auswahl der richtigen Graphdatenbank
Die Cloud-Verfügbarkeit vereinfacht das Bereitstellen und Skalieren von Datenbanken


Graphdatenbanken sind leistungsstarke Werkzeuge, um komplexe Daten-Beziehungen darzustellen und vernetzte Informationen schnell zu analysieren. Doch jeder Datenbanktyp hat spezifische Eigenschaften und eignet sich für andere Anwendungsfälle. Welche Graphdatenbank ist also wann die richtige? Aerospike empfiehlt Unternehmen, ihre Anforderungen unter vier Gesichtspunkten zu prüfen.

Graphdatenbanken haben sich als äußerst leistungsfähige Lösungen für viele Anwendungsfälle etabliert. Mit ihnen lassen sich vernetzte, strukturierte und unstrukturierte Daten schnell verarbeiten, analysieren und darstellen. Noch mehr an Bedeutung gewinnen Graphdatenbanken durch die Verbreitung von Künstlicher Intelligenz (KI) und Machine Learning (ML). Denn Graphdatenbanken sind optimale Wissensspeicher für Systeme, die mit Retrieval-Augmented Generation (RAG) arbeiten. Zudem vereinfacht die Cloud-Verfügbarkeit das Bereitstellen und Skalieren von Datenbanken. Doch die Hersteller bieten eine ganze Reihe unterschiedlicher Datenbanktypen und Datenmodelle für Graphen. Der Realtime-Datenbankanbieterin Aerospike empfiehlt daher, bei der Auswahl auf die folgenden vier Faktoren zu achten.

1. Analytischer oder operativer Anwendungsfall
Die wichtigste Frage zu Projektbeginn: Soll die Graphdatenbank analytische oder operative Anwendungsfälle unterstützen? Analytische und operative Graphen sind zwei unterschiedliche Ansätze, die beide spezifische Einsatzgebiete und Anforderungen bedienen. Analytische Graphen sind darauf ausgelegt, komplexe Datenanalysen durchzuführen und Muster in Datensätzen zu erkennen; sie nutzen daher häufig Online Analytical Processing (OLAP).

Einsatzgebiete sind Business Intelligence und Data Science, wo sie Analysen als Basis für strategische Entscheidungen liefern. Wissensgraphen, Datenexploration und -visualisierung zur Identifizierung komplexer Muster oder Netzwerkanalysen zur Optimierung von Datenflüssen sind typische Anwendungsfälle. Analytische Graphen eignen sich hervorragend, wenn das Datenvolumen ein Terabyte nicht übersteigt, Abfragen weniger zeitkritisch sind und nur eine begrenzte Anzahl gleichzeitiger User zugreift.

Operative Graphen sind hingegen für dynamische, transaktionale Umgebungen und für Echtzeitanwendungen konzipiert. Beispiele sind Identitätsabgleich in Werbe- und Marketingtechnologien, Echtzeit-Betrugserkennung im Bankwesen oder personalisierte Angebote in E-Commerce-Anwendungen. All diese Anwendungen erfordern eine sehr geringe Latenz im Bereich von Millisekunden, die Anzahl der gleichzeitigen Benutzer kann in die Tausende oder Millionen gehen und es sind strenge Service-Level-Vereinbarungen wie beispielsweise eine Verfügbarkeit von 99,999 Prozent einzuhalten. Daher verwenden operative Graphen Online Transaction Processing (OLTP), was schnelle Lese-, Schreib- und Aktualisierungsvorgänge ermöglicht.

2. LPG- oder RDF-Datenmodell
Graphdatenbanken zählen zu den NoSQL-Datenbanken und unterscheiden sich zunächst im Datenmodell – Labeled Property Graph (LPG) oder Resource Description Framework (RDF). RDF stellt Daten in Form von Tripeln dar, die sich aus Subjekt, Prädikat und Objekt zusammensetzen. Das RDF-Datenmodell ist standardisiert und damit unflexibler bei der Daten-Modellierung als LPG.

LPG-Modelle organisieren die Daten in Form von Knoten und Kanten. Sowohl Knoten als auch Kanten können über Eigenschaften näher beschrieben werden. Das LPG-Datenmodell ermöglicht eine agile Datenmodellierung. Neue Beziehungen und Knoten lassen sich hinzufügen, ohne die bestehende Struktur zu ändern. Die meisten Unternehmen werden sich daher für eine Graph-Anwendung basierend auf dem LPG-Modell entscheiden.

3. Prozedurale oder deskriptive Abfragesprache
Um komplexe Datenmuster zu durchsuchen und den kürzesten Pfad zwischen Knoten zu ermitteln, verwenden Graphdatenbanken spezielle Abfragesprachen. LPG-Modelle nutzen Cypher, Gremlin oder GQL (Graph Query Language). Letztere wurde Anfang 2024 zum internationalen ISO-Standard erklärt. Die Standardabfragesprache für RDF-Modelle ist SPARQL.

Gremlin, Teil des TinkerPop-Frameworks, ist als Open-Source-Sprache anbieterunabhängig und nutzt einen prozeduralen Ansatz. Sie erfordert daher ein tiefes Verständnis von Aufbau und Verteilung der Daten. Cypher, ebenfalls seit kurzem als Open-Source verfügbar, GQL und SPARQL sind deskriptive und daher SQL-ähnliche Abfragesprachen.

Während eine prozedurale Abfragesprache Entwicklern mehr Kontrolle über den Ausführungsprozess ermöglicht, ist eine deskriptive Abfragesprache für viele einfacher zu erlernen und anzuwenden.

4. Performance und Skalierbarkeit
Graphdatenbanken speichern Datenbeziehungen effizient und führen komplexe Datenbankabfragen sehr schnell aus. Dennoch variieren Performance und Skalierbarkeit je nach Datenbank-Anbieter. "Einige Datenbanken verwenden In-Memory-Funktionen, die für eine Performance von weniger als einer Millisekunde und maximale Speichereffizienz sorgen. Mit zunehmendem Datenvolumen sind In-Memory-Systeme jedoch häufig überlastet, worunter die Skalierbarkeit leidet", erklärt Evan Cummack, CPO bei Aerospike.

Ein Single-Instance-System ist einfacher zu verwalten und zu konfigurieren, schränkt jedoch die Skalierbarkeit ein. Für wachsende Datenmengen oder zukünftig mehr User-Anfragen ist eine verteilte Graphdatenbank besser geeignet.

Bei verteilten Instanzen können allerdings Multi-Hop-Abfragen zu einer Herausforderung für die Skalierung werden. Vor allem native Graphdatenbanken lösen dies durch indexfreie Adjazenz. Dabei speichern sie direkte Verweise zwischen Knoten, um schnell zwischen verwandten Entitäten zu navigieren. Abfragen werden so noch effizienter und schneller. Allerdings steigt dabei der Speicherbedarf, abhängig von der Dichte der Graphen und der Anzahl der Beziehungen. Und wenn die Datenmengen den verfügbaren Speicherplatz übersteigen, sinkt die Leistung sofort rapide.

Indexfreie Adjazenz ist nicht skalierbar und funktioniert daher nur bei kleineren Datensätzen wirklich gut. Andere Datenbanken verwenden stattdessen Mechanismen wie Indizes, die sich positiv auf Performance und Effizienz auswirken können.

Fazit
Bei der Entscheidung für eine Graphdatenbank sollten Unternehmen vorab ihre spezifischen Anforderungen sowie die vorhandene Infrastruktur und Wachstumspläne sorgfältig prüfen. Vor allem der Anwendungsfall ist entscheidend. Denn jede Art von Graphdatenbank ist für einen bestimmten Zweck konzipiert.
Darüber hinaus haben Unternehmen die Wahl zwischen nativen und Multimodell-Graphdatenbanken. Während native Graphdatenbanken ausschließlich für die Verarbeitung von Graphen optimiert sind, unterstützen Multimodell-Datenbanken verschiedene Datenmodelle und sind daher flexibler, wenn es um künftige Anforderungen geht. (Aerospike: ra)

eingetragen: 23.12.24
Newsletterlauf: 14.03.25

Aerospike: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • XLAs: Der Mensch als Maßstab

    Über Jahrzehnte galten Service Level Agreements (SLAs) als Maßstab für gutes IT- und Servicemanagement: Wurde ein Ticket fristgerecht gelöst, war die Aufgabe erledigt. Doch in einer zunehmend digitalisierten Arbeitswelt zeigt sich: Diese Logik greift zu kurz. Effizienz allein entscheidet nicht mehr, ob Mitarbeitende zufrieden und produktiv bleiben. Gefragt ist ein neues Verständnis, das die tatsächliche Erfahrung der Menschen in den Mittelpunkt rückt.

  • Cloud-Souveränität immer stärker im Mittelpunkt

    Mit dem rasanten Fortschritt der digitalen Wirtschaft und dem Aufkommen zahlreicher neuer Technologien - allen voran Künstlicher Intelligenz (KI) - stehen europäische Entscheidungsträger vor einer neuen Herausforderung: Wie lässt sich ein innovatives Ökosystem regionaler Cloud-Anbieter schaffen, das sowohl leistungsfähige Lösungen als auch ausreichende Skalierbarkeit bietet? Und wie kann dieses Ökosystem mit internationalen Anbietern konkurrieren und zugleich die Abhängigkeit von ihnen verringern? Politik, Regulierungsbehörden, Forschungseinrichtungen und Industrievertreter in Europa konzentrieren sich darauf, wie der Kontinent seine Position im globalen Wettlauf um Cloud-Innovationen verbessern kann - ohne dabei die Kontrolle, Autonomie und Vertraulichkeit über europäische Daten aufzugeben, die andernfalls womöglich in anderen Märkten gespeichert, verarbeitet oder abgerufen würden.

  • Vom Nearshoring zum Smart Sourcing

    Aufgrund des enormen IT-Fachkräftemangels und der wachsenden Anforderungen von KI und digitaler Transformationen benötigen Unternehmen heute flexible und kosteneffiziente Lösungen, um wettbewerbsfähig zu bleiben. Für die Umsetzung anspruchsvoller Innovationsprojekte mit hohen Qualitätsstandards entscheiden sich deshalb viele Unternehmen für Nearshoring, da dieses Modell ihnen Zugang zu hochausgebildeten IT-Fachkräften in räumlicher und kultureller Nähe ermöglicht.

  • Sechs stille Killer des Cloud-Backups

    Cloud-Backups erfreuen sich zunehmender Beliebtheit, da sie auf den ersten Blick eine äußerst einfache und praktische Maßnahme zu Schutz von Daten und Anwendungen sind. Andy Fernandez, Director of Product Management bei Hycu, nennt in der Folge sechs "stille Killer", welche die Performance von Cloud-Backups still und leise untergraben. Diese werden außerhalb der IT-Teams, die täglich damit zu tun haben, nicht immer erkannt, können aber verheerende Folgen haben, wenn sie ignoriert werden.

  • Datenaufbewahrungsstrategie und SaaS

    Die Einhaltung von Richtlinien zur Datenaufbewahrung sind für Unternehmen unerlässlich, denn sie sorgen dafür, dass wertvolle Informationen sicher gespeichert und Branchenvorschriften - egal wie komplex sie sind - eingehalten werden. Diese Governance-Frameworks legen fest, wie Unternehmen sensible Daten verwalten - von deren Erstellung und aktiven Nutzung bis hin zur Archivierung oder Vernichtung. Heute verlassen sich viele Unternehmen auf SaaS-Anwendungen wie Microsoft 365, Salesforce und Google Workspace. Die Verlagerung von Prozessen und Daten in die Cloud hat jedoch eine gefährliche Lücke in die Zuverlässigkeit der Datenaufbewahrung gerissen, denn die standardmäßigen Aufbewahrungsfunktionen der Drittanbieter entsprechen häufig nicht den Compliance-Anforderungen oder Datenschutzzielen.

  • Lücken der SaaS-Plattformen schließen

    Die zunehmende Nutzung von Software-as-a-Service (SaaS)-Anwendungen wie Microsoft 365, Salesforce oder Google Workspace verändert die Anforderungen an das Datenmanagement in Unternehmen grundlegend. Während Cloud-Dienste zentrale Geschäftsprozesse unterstützen, sind standardmäßig bereitgestellte Datenaufbewahrungsfunktionen oft eingeschränkt und können die Einhaltung der Compliance gefährden. Arcserve hat jetzt zusammengefasst, worauf es bei der Sicherung der Daten führender SaaS-Anbieter ankommt.

  • Nicht mehr unterstützte Software managen

    Von Windows bis hin zu industriellen Produktionssystemen: Wie veraltete Software Unternehmen angreifbar macht und welche Strategien jetzt nötig sind Veraltete Software ist weit verbreitet - oft auch dort, wo man es nicht sofort vermuten würde. Beispiele für besonders langlebige Anwendungen sind das SABRE-Flugbuchungssystem oder die IRS-Systeme "Individual Master File" und "Business Master File" für Steuerdaten, die seit den frühen 1960er-Jahren im Einsatz sind. Während solche Anwendungen ihren Zweck bis heute erfüllen, existiert daneben eine Vielzahl alter Software, die längst zum Sicherheitsrisiko geworden ist.

  • Wie sich Teamarbeit im KI-Zeitalter verändert

    Liefertermine wackeln, Teams arbeiten unter Dauerlast, Know-how verschwindet in der Rente: In vielen Industrieunternehmen gehört der Ausnahmezustand zum Betriebsalltag. Gleichzeitig soll die Zusammenarbeit in Produktion, Qualitätskontrolle und Wartung immer schneller, präziser und vernetzter werden. Wie das KI-gestützt gelingen kann, zeigt der Softwarehersteller Augmentir an sechs konkreten Praxisbeispielen.

  • Vom Workaround zum Schatten-Account

    Um Aufgaben im Arbeitsalltag schneller und effektiver zu erfüllen, ist die Suche nach Abkürzungen Gang und Gebe. In Kombination mit dem technologischen Fortschritt erreicht die Effizienz menschlicher Arbeit so immer neue Höhen und das bringt Unternehmen unwissentlich in eine Zwickmühle: Die zwischen Sicherheit und Produktivität. Wenn ein Mitarbeiter einen Weg findet, seine Arbeit schneller oder besser zu erledigen, die Bearbeitung von Zugriffsanfragen durch die IT-Abteilung aber zu lange dauert oder zu kompliziert ist, dann finden Mitarbeiter oftmals "kreative" Lösungen, um trotzdem weiterarbeiten zu können. Diese "Workarounds" entstehen selten aus böser Absicht. Allerdings stellen sie gravierende Sicherheitslücken dar, denen sich viele Beschäftigte und Führungskräfte nicht bewusst sind.

  • KI in der Cloud sicher nutzen

    Keine Technologie hat die menschliche Arbeit so schnell und weitreichend verändert wie Künstliche Intelligenz. Dabei gibt es bei der Integration in Unternehmensprozesse derzeit keine Tür, die man KI-basierter Technologie nicht aufhält. Mit einer wachsenden Anzahl von KI-Agenten, LLMs und KI-basierter Software gibt es für jedes Problem einen Anwendungsfall. Die Cloud ist mit ihrer immensen Rechenleistung und Skalierbarkeit ein Motor dieser Veränderung und Grundlage für die KI-Bereitstellung.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen