Sie sind hier: Startseite » Markt » Tipps und Hinweise

Mangelware: Komplexe Machine Learning-Anwendungen


Selbst IT-Fachleute wissen oft nicht, was unter Machine Learning zu verstehen ist
Acht Gründe, warum es maschinelles Lernen in Unternehmen schwer hat



Maschinelles Lernen (ML) hat deutliche Fortschritte gemacht. Der Streaming-Service Netflix nutzt diese Technik beispielsweise, um seinen Nutzern maßgeschneiderte TV-Angebote zu servieren, und Googles App "Arts & Culture" ist dank ML in der Lage, die Doppelgänger von Smartphone-Nutzern in weltbekannten Kunstwerken aufzuspüren. Doch wenn es um den Einsatz von Machine Learning in Unternehmen geht, sieht die Sachlage anders aus. Umfassende, komplexe Machine Learning-Applikationen sind im Unternehmensumfeld nach wie vor Mangelware. Die Application-Intelligence-Experten von AppDynamics nennen dafür acht Gründe.

1. Unklarheit, was maschinelles Lernen ist
Selbst IT-Fachleute wissen oft nicht, was unter Machine Learning zu verstehen ist. De facto heißt ML, dass mathematische Verfahren eingesetzt werden, um große Datenmengen nach Mustern zu durchsuchen. Die Algorithmen entfernen dazu störendes "Rauschen" (Noise) aus den Daten-Samples.

2. Nutzen ist nicht offenkundig
Die Stärke von ML-Algorithmen ist, dass sie sich ohne Zutun von Menschen an Systeme anpassen können, die sich verändern. Dabei sind sie in der Lage, zwischen erwarteten und anormalen Verhaltensmustern zu unterscheiden. Deshalb lässt sich maschinelles Lernen in vielen Bereichen einsetzen, etwa im Gesundheitswesen und in Sicherheitsapplikationen. Gleiches gilt für Anwendungen, die Daten klassifizieren oder Nutzern Empfehlungen geben, etwa welche Waren ihren Geschmack treffen könnten. Ein weiteres Einsatzfeld ist die Sprach- und Bilderkennung.

3. Den richtigen Einstieg finden
Unternehmen wissen oft nicht, wie sie Machine Learning implementieren sollen. Oft erfolgt das auf zwei Arten: Mitarbeiter beginnen eigenständig damit, ML für die Datenanalyse zu nutzen. Oder ein Unternehmen schafft eine Lösung an, in die ML-Algorithmen integriert sind, etwa eine Lösung für das Performance-Management von Anwendungen.

4. Daten aufbereiten
Einfach Daten zu sammeln und einen ML-Algorithmus "darüber zu jagen", funktioniert nicht. Vielmehr müssen die Daten zuvor aggregiert und um fehlende Informationsbestände ergänzt werden. Zudem ist es notwendig, "Datenmüll" zu entfernen und Informationen in die richtige Reihenfolge zu bringen.

5. Mangel an öffentlich verfügbaren, klassifizierten Daten
Erste Schritte in Richtung Machine Learning wären einfacher, würden genügend "gelabelte" Datensätze zur Verfügung stehen. Solche Informationen sind notwendig, um Machine-Learning- und Deep-Learning-Systeme zu trainieren. Leider sind solche Informationsbestände nur begrenzt verfügbar. Daher sind Unternehmen oft zu einem "Kaltstart" gezwungen, wenn sie ein ML-Projekt initiieren.

6. Domain Knowledge ist gefragt
Im Idealfall ist maschinelles Lernen die perfekte Kombination eines Algorithmus und einer Problemstellung. Das bedeutet jedoch, dass ein Machine-Learning-Fachmann "Domain Knowledge" benötigt. Das sind beispielsweise spezielle Kenntnisse über die Branche, in der ein Unternehmen aktiv ist, oder über eingesetzte Fertigungstechnologien. Auch Wissen über IT-Systeme und die Daten, die sie generieren, zählt dazu.

7. Datenspezialisten sind kein Allheilmittel
Die meisten Data Scientists sind Mathematiker. Daher verfügen sie nicht in jedem Fall über die Domain Knowledge, die für ihren Arbeitgeber relevant ist. Solche Spezialisten sollten daher mit Analysten und Domain-Experten aus dem Unternehmen zusammenarbeiten. Das erhöht jedoch die Kosten von Machine-Learning-Projekten.

8. Es fehlt eine gemeinsame "Sprache"
Bei Machine-Learning-Projekten in Unternehmen gibt es häufig keine Regeln, auf welche Weise Resultate gewonnen werden sollen. Deshalb entstehen "Silos", weil Mitarbeiter unterschiedliche Daten-Samples und Definitionen der Eingabewerte verwenden. Das wiederum hat zur Folge, dass ML-Analysen höchst unterschiedliche Ergebnisse produzieren. Solche Diskrepanzen können Zweifel am Nutzen von ML schüren.

Fazit: Keine Angst vor Machine Learning
Unternehmen, die Machine Learning einsetzen wollen, müssen somit etliche Klippen umschiffen. Dennoch sollten sie sich mit maschinellem Lernen, Deep Learning und künstlicher Intelligenz (KI) beschäftigen. Denn diese Technologien spielen bereits heute eine wichtige Rolle in Unternehmensanwendungen – und sie werden drastisch an Bedeutung gewinnen. Eine zögerliche Haltung ist somit keine gute Strategie. Denn wer den Anschluss verliert, wird dies teuer bezahlen: durch eine sinkende Wettbewerbsfähigkeit.
(AppDynamics: ra)

eingetragen: 19.06.18
Newsletterlauf: 03.07.18

AppDynamics: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Kostenloser PMK-Verlags-Newsletter
Ihr PMK-Verlags-Newsletter hier >>>>>>


Meldungen: Tipps und Hinweise

  • Sicher modernisieren & Daten schützen

    Viele Unternehmen haben die Cloud-Migration ihrer SAP-Landschaften lange Zeit aufgeschoben. ERP-Anwendungslandschaften, sind über viele Jahre hinweg gewachsen, die Verflechtungen vielfältig, die Datenmengen enorm und die Abhängigkeit der Business Continuity von diesen Systemen gigantisch. Dennoch: Der Druck zur ERP-Modernisierung steigt und viele Unternehmen werden 2025 das Projekt Cloud-Migration mit RISE with SAP angehen.

  • Was tun mit ausgedienten Rechenzentren?

    Rund um die Jahrtausendwende begann in Deutschland ein wahrer Bauboom für Datacenter und Colocation-Flächen. Viele dieser Anlagen befinden sich auch heute noch in Betrieb. Doch die rasante Entwicklung der Informationstechnologie führt dazu, dass Rechenzentren in immer kürzeren Abständen modernisiert oder ersetzt werden müssen. Denn wann immer ein Betreiber den Spatenstich für ein neues Datacenter feiert, dürfen die Begriffe "Nachhaltigkeit" und "Umweltschutz" nicht fehlen.

  • Tipps für MSPs im Jahr 2025

    Ob durch technologische Innovationen, geschicktes Marketing oder eine starke Unternehmenskultur - mit den richtigen Maßnahmen können MSPs im Jahr 2025 nicht nur ihre Wettbewerbsfähigkeit steigern, sondern auch langfristig wachsen. Hier sind acht Tipps, die ihnen dabei helfen, das Jahr erfolgreich zu gestalten.

  • KI-Logik in der Unternehmenssoftware

    Für Unternehmen stellt sich nicht mehr die Frage, ob, sondern wie sie Künstliche Intelligenz für ihren Business Case nutzen. Der meist aufwändigen Implementierung von KI-Tools in bestehende Systeme sagt innovative Software jetzt den Kampf an - mit bereits in die Lösung eingebetteter KI. IFS, Anbieterin von Cloud-Business-Software, zeigt, wie Unternehmen anstatt der schwerfälligen Integration von externen Tools ein technologisches Komplettpaket erhalten, das sofort einsatzfähig ist.

  • Schutz von Cloud-Daten

    In der aktuellen Umfrage "2024 State of Cloud Strategy Survey" geben 79 Prozent der Befragten in Unternehmen an, dass sie Multicloud im Einsatz haben oder die Implementierung von Multicloud planen. Die Chancen stehen also gut, dass Multicloud-Strategien weiter zunehmen werden, wenngleich das nicht bedeutet, dass lokale und private Clouds verschwinden.

  • Das Herzstück des Betriebs

    Salt Typhoon mag ein Weckruf sein, aber es ist auch eine Gelegenheit, die Abwehrkräfte zu stärken und Unternehmen gegen aufkommende Bedrohungen zukunftssicher zu machen. Der Angriff hat Schwachstellen im Telekommunikations- und ISP-Sektor aufgedeckt, aber die daraus gezogenen Lehren gehen weit über eine einzelne Branche hinaus. Ob Telekommunikationsunternehmen, Internetdienstanbieter, SaaS-abhängiges Unternehmen oder Multi-Cloud-Unternehmen - Datensicherung muss für alle oberste Priorität haben.

  • Optimale Wissensspeicher

    Graphdatenbanken sind leistungsstarke Werkzeuge, um komplexe Daten-Beziehungen darzustellen und vernetzte Informationen schnell zu analysieren. Doch jeder Datenbanktyp hat spezifische Eigenschaften und eignet sich für andere Anwendungsfälle. Welche Graphdatenbank ist also wann die richtige? Aerospike empfiehlt Unternehmen, ihre Anforderungen unter vier Gesichtspunkten zu prüfen.

  • Zugang zu anfälligen Cloud-Hosts

    Zwischen 2023 und 2024 haben laut einer aktuellen Studie 79 Prozent der Finanzeinrichtungen weltweit mindestens einen Cyberangriff identifiziert (2023: 68 Prozent). Hierzulande berichtet die BaFin, dass 2023 235 Meldungen über schwerwiegende IT-Probleme eingegangen sind. Fünf Prozent davon gehen auf die Kappe von Cyberangreifern.

  • Wachsende SaaS-Bedrohungen

    Die jüngsten Enthüllungen über den massiven Cyberangriff von Salt Typhoon auf globale Telekommunikationsnetzwerke sind eine deutliche Erinnerung an die sich entwickelnde und ausgeklügelte Natur von Cyberbedrohungen. Während die Angreifer sich darauf konzentrierten, Kommunikation abzufangen und sensible Daten zu entwenden, werfen ihre Handlungen ein Schlaglicht auf ein umfassenderes, dringenderes Problem: die Unzulänglichkeit traditioneller Datensicherungsmethoden beim Schutz kritischer Infrastrukturen.

  • Einführung des Zero-Trust-Frameworks

    Die Cyber-Sicherheit entwickelt sich mit rasanter Geschwindigkeit, weshalb eine traditionelle Verteidigung den Anforderungen nicht mehr gerecht wird. Moderne Cyber-Bedrohungen bewegen sich inzwischen mühelos seitlich innerhalb von Netzwerken und nutzen Schwachstellen aus, die mit traditionellen Perimeter-Schutzmaßnahmen nicht vollständig behoben werden können.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen